Copied to
clipboard

G = C42.178D6order 192 = 26·3

178th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.178D6, C6.842+ 1+4, C6.402- 1+4, C4:Q8:16S3, C4:C4.126D6, C4.D12:46C2, D6:3Q8:38C2, (C2xQ8).112D6, Dic3:5D4:44C2, C42:7S3:27C2, C42:2S3:26C2, D6.D4:47C2, C12:D4.13C2, (C2xC6).277C24, Dic6:C4:43C2, C12.140(C4oD4), C2.88(D4:6D6), C12.23D4:27C2, (C4xC12).218C22, (C2xC12).639C23, D6:C4.156C22, C4.23(Q8:3S3), (C6xQ8).144C22, (C2xD12).173C22, C4:Dic3.255C22, C22.298(S3xC23), Dic3:C4.169C22, (C22xS3).122C23, C2.41(Q8.15D6), (C2xDic3).274C23, (C2xDic6).192C22, (C4xDic3).166C22, C3:11(C22.36C24), (C3xC4:Q8):19C2, C4:C4:S3:47C2, C6.124(C2xC4oD4), (S3xC2xC4).150C22, C2.32(C2xQ8:3S3), (C3xC4:C4).220C22, (C2xC4).602(C22xS3), SmallGroup(192,1292)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42.178D6
C1C3C6C2xC6C22xS3S3xC2xC4D6:3Q8 — C42.178D6
C3C2xC6 — C42.178D6
C1C22C4:Q8

Generators and relations for C42.178D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c5 >

Subgroups: 560 in 216 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, D6, C2xC6, C42, C42, C22:C4, C4:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C2xQ8, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C22xS3, C42:C2, C4xD4, C4xQ8, C4:D4, C22:Q8, C22.D4, C4.4D4, C42:2C2, C4:Q8, C4xDic3, C4xDic3, Dic3:C4, Dic3:C4, C4:Dic3, D6:C4, D6:C4, C4xC12, C3xC4:C4, C3xC4:C4, C2xDic6, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, C6xQ8, C22.36C24, C42:2S3, C42:7S3, Dic6:C4, Dic3:5D4, D6.D4, C12:D4, C4.D12, C4:C4:S3, D6:3Q8, C12.23D4, C3xC4:Q8, C42.178D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2+ 1+4, 2- 1+4, Q8:3S3, S3xC23, C22.36C24, D4:6D6, C2xQ8:3S3, Q8.15D6, C42.178D6

Smallest permutation representation of C42.178D6
On 96 points
Generators in S96
(1 42 7 48)(2 37 8 43)(3 44 9 38)(4 39 10 45)(5 46 11 40)(6 41 12 47)(13 53 19 59)(14 60 20 54)(15 55 21 49)(16 50 22 56)(17 57 23 51)(18 52 24 58)(25 66 31 72)(26 61 32 67)(27 68 33 62)(28 63 34 69)(29 70 35 64)(30 65 36 71)(73 91 79 85)(74 86 80 92)(75 93 81 87)(76 88 82 94)(77 95 83 89)(78 90 84 96)
(1 28 18 74)(2 75 19 29)(3 30 20 76)(4 77 21 31)(5 32 22 78)(6 79 23 33)(7 34 24 80)(8 81 13 35)(9 36 14 82)(10 83 15 25)(11 26 16 84)(12 73 17 27)(37 93 59 70)(38 71 60 94)(39 95 49 72)(40 61 50 96)(41 85 51 62)(42 63 52 86)(43 87 53 64)(44 65 54 88)(45 89 55 66)(46 67 56 90)(47 91 57 68)(48 69 58 92)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 82 7 76)(2 75 8 81)(3 80 9 74)(4 73 10 79)(5 78 11 84)(6 83 12 77)(13 35 19 29)(14 28 20 34)(15 33 21 27)(16 26 22 32)(17 31 23 25)(18 36 24 30)(37 64 43 70)(38 69 44 63)(39 62 45 68)(40 67 46 61)(41 72 47 66)(42 65 48 71)(49 85 55 91)(50 90 56 96)(51 95 57 89)(52 88 58 94)(53 93 59 87)(54 86 60 92)

G:=sub<Sym(96)| (1,42,7,48)(2,37,8,43)(3,44,9,38)(4,39,10,45)(5,46,11,40)(6,41,12,47)(13,53,19,59)(14,60,20,54)(15,55,21,49)(16,50,22,56)(17,57,23,51)(18,52,24,58)(25,66,31,72)(26,61,32,67)(27,68,33,62)(28,63,34,69)(29,70,35,64)(30,65,36,71)(73,91,79,85)(74,86,80,92)(75,93,81,87)(76,88,82,94)(77,95,83,89)(78,90,84,96), (1,28,18,74)(2,75,19,29)(3,30,20,76)(4,77,21,31)(5,32,22,78)(6,79,23,33)(7,34,24,80)(8,81,13,35)(9,36,14,82)(10,83,15,25)(11,26,16,84)(12,73,17,27)(37,93,59,70)(38,71,60,94)(39,95,49,72)(40,61,50,96)(41,85,51,62)(42,63,52,86)(43,87,53,64)(44,65,54,88)(45,89,55,66)(46,67,56,90)(47,91,57,68)(48,69,58,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,82,7,76)(2,75,8,81)(3,80,9,74)(4,73,10,79)(5,78,11,84)(6,83,12,77)(13,35,19,29)(14,28,20,34)(15,33,21,27)(16,26,22,32)(17,31,23,25)(18,36,24,30)(37,64,43,70)(38,69,44,63)(39,62,45,68)(40,67,46,61)(41,72,47,66)(42,65,48,71)(49,85,55,91)(50,90,56,96)(51,95,57,89)(52,88,58,94)(53,93,59,87)(54,86,60,92)>;

G:=Group( (1,42,7,48)(2,37,8,43)(3,44,9,38)(4,39,10,45)(5,46,11,40)(6,41,12,47)(13,53,19,59)(14,60,20,54)(15,55,21,49)(16,50,22,56)(17,57,23,51)(18,52,24,58)(25,66,31,72)(26,61,32,67)(27,68,33,62)(28,63,34,69)(29,70,35,64)(30,65,36,71)(73,91,79,85)(74,86,80,92)(75,93,81,87)(76,88,82,94)(77,95,83,89)(78,90,84,96), (1,28,18,74)(2,75,19,29)(3,30,20,76)(4,77,21,31)(5,32,22,78)(6,79,23,33)(7,34,24,80)(8,81,13,35)(9,36,14,82)(10,83,15,25)(11,26,16,84)(12,73,17,27)(37,93,59,70)(38,71,60,94)(39,95,49,72)(40,61,50,96)(41,85,51,62)(42,63,52,86)(43,87,53,64)(44,65,54,88)(45,89,55,66)(46,67,56,90)(47,91,57,68)(48,69,58,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,82,7,76)(2,75,8,81)(3,80,9,74)(4,73,10,79)(5,78,11,84)(6,83,12,77)(13,35,19,29)(14,28,20,34)(15,33,21,27)(16,26,22,32)(17,31,23,25)(18,36,24,30)(37,64,43,70)(38,69,44,63)(39,62,45,68)(40,67,46,61)(41,72,47,66)(42,65,48,71)(49,85,55,91)(50,90,56,96)(51,95,57,89)(52,88,58,94)(53,93,59,87)(54,86,60,92) );

G=PermutationGroup([[(1,42,7,48),(2,37,8,43),(3,44,9,38),(4,39,10,45),(5,46,11,40),(6,41,12,47),(13,53,19,59),(14,60,20,54),(15,55,21,49),(16,50,22,56),(17,57,23,51),(18,52,24,58),(25,66,31,72),(26,61,32,67),(27,68,33,62),(28,63,34,69),(29,70,35,64),(30,65,36,71),(73,91,79,85),(74,86,80,92),(75,93,81,87),(76,88,82,94),(77,95,83,89),(78,90,84,96)], [(1,28,18,74),(2,75,19,29),(3,30,20,76),(4,77,21,31),(5,32,22,78),(6,79,23,33),(7,34,24,80),(8,81,13,35),(9,36,14,82),(10,83,15,25),(11,26,16,84),(12,73,17,27),(37,93,59,70),(38,71,60,94),(39,95,49,72),(40,61,50,96),(41,85,51,62),(42,63,52,86),(43,87,53,64),(44,65,54,88),(45,89,55,66),(46,67,56,90),(47,91,57,68),(48,69,58,92)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,82,7,76),(2,75,8,81),(3,80,9,74),(4,73,10,79),(5,78,11,84),(6,83,12,77),(13,35,19,29),(14,28,20,34),(15,33,21,27),(16,26,22,32),(17,31,23,25),(18,36,24,30),(37,64,43,70),(38,69,44,63),(39,62,45,68),(40,67,46,61),(41,72,47,66),(42,65,48,71),(49,85,55,91),(50,90,56,96),(51,95,57,89),(52,88,58,94),(53,93,59,87),(54,86,60,92)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C···4H4I4J4K4L4M4N4O6A6B6C12A···12F12G12H12I12J
order12222223444···4444444466612···1212121212
size11111212122224···466661212122224···48888

36 irreducible representations

dim1111111111112222244444
type+++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4oD42+ 1+42- 1+4Q8:3S3D4:6D6Q8.15D6
kernelC42.178D6C42:2S3C42:7S3Dic6:C4Dic3:5D4D6.D4C12:D4C4.D12C4:C4:S3D6:3Q8C12.23D4C3xC4:Q8C4:Q8C42C4:C4C2xQ8C12C6C6C4C2C2
# reps1111121122211142411222

Matrix representation of C42.178D6 in GL8(F13)

50000000
18000000
001200000
000120000
00000010
0000111211
000012000
000011012
,
50000000
18000000
00100000
00010000
00000100
00001000
0000111211
00000001
,
811000000
05000000
000120000
001120000
00005000
00000500
00000080
00005508
,
80000000
08000000
001120000
000120000
000001200
00001000
0000111211
000001211

G:=sub<GL(8,GF(13))| [5,1,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,12,1,0,0,0,0,0,1,0,1,0,0,0,0,1,12,0,0,0,0,0,0,0,11,0,12],[5,1,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,11,1],[8,0,0,0,0,0,0,0,11,5,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,5,0,0,5,0,0,0,0,0,5,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8],[8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,12,0,1,12,0,0,0,0,0,0,12,1,0,0,0,0,0,0,11,1] >;

C42.178D6 in GAP, Magma, Sage, TeX

C_4^2._{178}D_6
% in TeX

G:=Group("C4^2.178D6");
// GroupNames label

G:=SmallGroup(192,1292);
// by ID

G=gap.SmallGroup(192,1292);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,758,219,100,675,570,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<